MATH 3B

MIDTERM 2 STUDY GUIDE

This is a study aid. It is meant to help increase your chances of success on the second midterm. Unlike the last study guide, this list IS comprehensive. Expect no surprises. I do not expect you to work every problem here, however working and understanding a sufficient sampling of these problems will GREATLY improve your chances of doing well on the midterm.
(1) Areas between curves: Section 6.1 \#1-30
(2) Volume of solids of revolution using disk or washer method: Section 6.2 \#1-30
(3) Volume of solids of revolution using cylindrical shell method: Section 6.3 \#3-26
(4) Various methods of integration:
(a) Integration by Parts Section $7.1 \# 3-38$
(b) Trigonometric Integrals Section 7.2 \#1-49
(c) Trigonometric Substitution Section 7.3 \#1-30
(5) Additional Remarks:
(a) It goes without saying that you will be expected to know how to do the "regular" u-substitution problems.
(b) It also goes without saying that you will be expected to know the antiderivatives that you should have already memorized (e.g. the antiderivatives of $\sin x, \cos x$, $\sec ^{2} x, \csc ^{2} x$, etc.)
(c) Be prepared to know sine and cosine of the "special angles": $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$. This information may be helpful in solving definite trigonometric and trigonometric substitution integrals.
(d) Remember that I am providing the following formulas on the exam:
(i) $\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)]$

In particular, this implies that $\sin A \cos A=\frac{1}{2} \sin (2 A)$
(ii) $\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$

In particular, this implies that $\sin ^{2}(A)=\frac{1}{2}[1-\cos (2 A)]$
(iii) $\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$

In particular, this implies that $\cos ^{2}(A)=\frac{1}{2}[1+\cos (2 A)]$

